erpc_analysis/models/
partitions.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
use std::collections::HashMap;

/// Represents a single connected component in the graph (works for
/// both WCC and SCC)
#[derive(Debug, Clone, PartialEq)]
pub struct ConnectedComponent {
    pub component_id: i64,
    pub relay_fingerprints: Vec<String>,
    pub size: usize,
}

/// Represents the results of connected components analysis (works for
/// both WCC and SCC)
#[derive(Debug, Default, Clone, PartialEq)]
pub struct ComponentAnalysisResult {
    pub components: Vec<ConnectedComponent>,
    pub total_components: Option<usize>,
    pub largest_component_size: Option<usize>,
    pub smallest_component_size: Option<usize>,
    pub component_size_distribution: Option<HashMap<usize, usize>>,
    // Percentage of nodes in largest component
    pub isolation_ratio: Option<f64>,
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_component_analysis_result_comprehensive() {
        let component1 = ConnectedComponent {
            component_id: 1,
            relay_fingerprints: vec![
                "RELAY001".to_string(),
                "RELAY002".to_string(),
                "RELAY003".to_string(),
            ],
            size: 3,
        };
        let component2 = ConnectedComponent {
            component_id: 2,
            relay_fingerprints: vec!["RELAY004".to_string()],
            size: 1,
        };

        let mut size_distribution = HashMap::new();
        size_distribution.insert(1, 1); // 1 component with size 1
        size_distribution.insert(3, 1); // 1 component with size 3

        let result = ComponentAnalysisResult {
            components: vec![component1, component2],
            total_components: Some(2),
            largest_component_size: Some(3),
            smallest_component_size: Some(1),
            component_size_distribution: Some(size_distribution.clone()),
            // 3 out of 4 nodes in largest component = 75%
            isolation_ratio: Some(75.0),
        };

        // Verify basic structure
        assert_eq!(result.components.len(), 2);
        assert_eq!(result.total_components.unwrap(), 2);
        assert_eq!(result.largest_component_size.unwrap(), 3);
        assert_eq!(result.smallest_component_size.unwrap(), 1);
        assert_eq!(result.isolation_ratio.unwrap(), 75.0);
        assert_eq!(
            result.component_size_distribution.unwrap(),
            size_distribution
        );

        // Verify component details
        assert_eq!(result.components[0].size, 3);
        assert_eq!(result.components[1].size, 1);
        assert_eq!(result.components[0].relay_fingerprints.len(), 3);
    }

    #[test]
    fn test_isolation_ratio_edge_cases() {
        // Test perfect isolation (all nodes in one component)
        let perfect_isolation = ComponentAnalysisResult {
            components: vec![],
            total_components: Some(1),
            largest_component_size: Some(100),
            smallest_component_size: Some(100),
            component_size_distribution: None,
            isolation_ratio: Some(100.0),
        };
        assert_eq!(perfect_isolation.isolation_ratio.unwrap(), 100.0);

        // Test complete fragmentation (all components size 1)
        let complete_fragmentation = ComponentAnalysisResult {
            components: vec![],
            total_components: Some(50),
            largest_component_size: Some(1),
            smallest_component_size: Some(1),
            component_size_distribution: None,
            isolation_ratio: Some(2.0), // (1/50)*100 = 2%
        };
        assert_eq!(complete_fragmentation.isolation_ratio.unwrap(), 2.0);
    }
}